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The effects of convex transverse curvature on the wall pressure fluctuations were 
studied through direct numerical simulations. The flow regime of interest is 
characterized by large ratio of the shear-layer thickness to the radius of curvature 
(y  = &/a) and by small a+, the radius of curvature in wall units. Two direct numerical 
simulations of a model problem approximating axial flow boundary layers on long 
cylinders were performed for y = 5 (a+ z 43) and y = 11 (a+ z 21). The space-time 
characteristics of the wall pressure fluctuations of the plane channel flow simulation of 
Kim, Moin & Moser (1987), which were studied by Choi & Moin (1990) are used to 
assess the effects of curvature. 

As the curvature increases the root-mean-square (r.m.s.) pressure fluctuations 
decrease and the ratio of the streamwise to spanwise lengthscales of the wall pressure 
fluctuations increases. Fractional contributions from various layers in the flow to the 
wall r.m.s. pressure fluctuations are marginally affected by the curvature. Curvature- 
dependent timescales and lengthscales are identified that collapse the high-frequency 
range of the wall pressure temporal spectra and the high wave-number range of the 
wall pressure streamwise spectra of flows with different curvatures. Taylor's hypothesis 
holds for the wall pressure fluctuations with a lower convection velocity than in the 
planar case. 

1. Introduction 
Knowledge of the characteristics of the wall pressure fluctuations is important for 

understanding fluid/structure interactions and hydro-acoustics. A comprehensive 
treatment of this subject is given by Blake (1986). Wall pressure fluctuations affect the 
acoustic characteristics (both radiation and detection) of underwater vehicles. 
Transversely curved turbulent flows occur over sonar devices towed by long cables; in 
such cases it is important to understand the characteristics of the wall pressure 
fluctuations in the flow regime where y = &/a is large and a+ = au,/v is small. Here, 6 
is the boundary-layer thickness, a is the cylinder radius, u, = ( ~ , / p ) * ' ~  is the shear 
velocity, u is the kinematic viscosity and 7, is the mean wall shear stress. For this flow 
regime (large y and small a+) there is only limited experimental data available on the 
statistical properties of the wall pressure fluctuations. Reviews of the experimental data 
of the wall pressure fluctuations on a flat plate are given by Willmarth (1975) and 
Eckelmann (1989). The effects of transverse curvature on the space-time characteristics 
of the wall pressure were investigated experimentally by Willmarth & Yang (1970) for 
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y M 2 and by Willmarth et al. (1976) for y M 4. Since in both studies a+ = 0(103), the 
curvature effects were limited to the outer part of the flow. 

Many of the difficulties in the measurement of the wall pressure fluctuations are 
avoided in direct numerical simulations (Handler et al. 1984; Choi & Moin 1990). 
However, simulations are limited to low Reynolds numbers. There is evidence 
(Willmarth 1975; Choi & Moin 1990) that the r.m.s. pressure normalized by the mean 
wall shear decreases with decreasing Reynolds number. Choi & Moin (1990) also found 
that the spectrum of the wall pressure fluctuations decreases with decreasing Reynolds 
number for low frequencies when scaled with inner variables, and for high frequencies 
when scaled with the outer variables. In measurements of the wall pressure intensity in 
a transversely curved boundary layer Willmarth & Yang (1970) concluded that the 
transverse curvature did not have a significant effect. However, this result is for a mild 
transverse curvature ( y  N 2, a+ N 4500), in which only the outer part of the boundary 
layer was affected by the curvature. In addition, any small curvature dependence that 
was present in their study was probably overshadowed by the strong Reynolds-number 
dependence of the wall pressure intensity. In subsequent wall pressure measurements 
on a cylinder (Willmarth et al. 1976), for which y N 4, the value of the wall r.m.s. 
pressure was not reported. 

As had been found in previous experiments (Willmarth & Wooldridge 1962; Wills 
1964; Emmerling, Meier & Dinkelacker 1973), the large-scale pressure correlation 
contours of Choi & Moin (1990) were more elongated in the spanwise direction than 
in the streamwise direction. However, the effect of curvature on the spatial correlations 
of the wall pressure correlations has not been established. Willmarth & Yang (1970) 
(y z 2) suggest that for large separations the ratio of spanwise to streamwise 
lengthscales decreases. However, their later study for y NN 4 (Willmarth et al. 1976) 
shows the opposite trend. Nevertheless, the wall pressure is significantly correlated 
around the cylinder and the azimuthal extent of the correlation increases with 
increasing curvature (Willmarth et al. 1976). Willmarth & Yang (1970) argued that the 
main effect of the transverse curvature is to reduce the spanwise lengthscale of the large 
eddies, located in the outer part of the boundary layer. 

In the planar turbulent boundary layer (Willmarth & Wooldridge 1962) as well as 
in the transversely curved turbulent boundary layer (Willmarth & Yang 1970; 
Willmarth et al. 1976), the space-time wall pressure correlations indicate that the 
eddies decay after travelling a distance of the order of their size. Convection velocities 
can be defined from the wall pressure space-time correlation contours (Wills 1964). In 
the planar geometry, there is a consensus among the experimental (Willmarth & 
Wooldridge 1962; Panton & Linebarger 1974) and numerical (Choi & Moin 1990) 
values reported for the convection velocity, which is about O.SU,. In the transversely 
curved turbulent flows of Willmarth & Yang (1970) and Willmarth et al. (1976), 
convection velocities identical to that of the planar case were reported. 

The objective of this paper is to examine and document the space-time characteristics 
of the wall pressure fluctuations in axial turbulent flows over long cylinders. To this 
end, we consider the direct numerical simulations presented in Neves, Moin & Moser 
(1993; hereinafter referred to as Part 1). As discussed in Part 1, the simulated flow was 
the axial flow between concentric cylinders, with no-stress boundary conditions on the 
outer cylinder, driven by a mild pressure gradient. In this model, some of the features 
of a free boundary layer developing on a cylinder, which has been studied 
experimentally, are absent. However, the model does account for the effects of 
transverse curvature in the absence of additional complications present in the free 
boundary layer. 
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For comparison, the spatial and temporal spectra of the plane channel wall pressure 
fluctuations from a database generated by Kim, Moin & Moser (1987) and Choi & 
Moin (1990) were used. The Reynolds number of the plane channel flow and that of 
the present flows are similar, and thus differences in the statistical characteristics can 
be ascribed to the transverse curvature alone. 

The width of the gap between the cylinders corresponds roughly to the thickness of 
a boundary layer and is denoted by 6, and the curvature parameter is y = 8/a,  where 
a is the inner cylinder radius. Throughout the paper 6 and the friction velocity (u,) are 
used for non-dimensionalization, unless otherwise noted. Thus, in these units the radial 
( r )  domain is r E [a', a' + I], and the curvature parameter is y = l /a ' ,  where a' = a/8 is 
the non-dimensional cylinder radius. In the remainder of the paper, the prime will be 
dropped for simplicity (thus a now refers to the non-dimensional radius). Total fields 
are indicated by upper case symbols and fluctuating fields are denoted by lower case 
symbols. For example, V and u are the total and fluctuating velocity vectors, 
respectively. In the two transverse curvature flow simulations discussed here, z ,  0 and 
r are the axial (streamwise), azimuthal (spanwise) and radial coordinates respectively, 
and y is the radial distance from the cylinder wall ( y  = r-a). The statistics were 
obtained from a sample collected after the calculations had reached the statistically 
steady state, and are calculated by averaging in the 8- and z-directions and time. The 
wall pressure database on which the results are based was generated after the flow had 
reached statistical steady state. Additional integration of the governing equations for 
wall pressure statistics were carried out for a period of 12.8 S/u, in the y = 5 flow and 
8.6 8/u,  in the y = 1 1  flow. The wall pressure was sampled at intervals Ats for a total 
period L,, resulting in N, time samples. In the temporal analysis a window of length 
L, is used. These parameters are given in table 1 for the three simulations under 
consideration. The numerical procedure used to compute the space-time characteristics 
of the wall pressure fluctuations is described in Neves et al. (1992) and will not be 
discussed here. 

The effects of transverse curvature on the sources of pressure fluctuations are 
discussed in 92. Section 3 contains the spatial spectra of the wall pressure fluctuations 
and in 94 the two-point correlations are presented. The fractional contributions of 
various flow regions to the wall pressure are studied in 95. The temporal spectra are 
presented in 96. Finally, $7 treats the convection velocity of the wall pressure 
fluctuations and examines the validity of Taylor's hypothesis. 

2. Pressure source terms 

Navier-S tokes equations, 
The Poisson equation for the pressure field is obtained from the divergence of the 

Boundary conditions for the pressure are obtained by evaluating the radial momentum 
equation at both boundaries of the finite domain in r ,  
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FIGURE 1. Root-mean square pressure in global coordinates: ---, plane channel (Kim 1989); 

cylinders with -, y = 5 and ----, y = 1 1 .  

Y 0 5 11 
LT 9.36 12.9 8.6 
Lt 1.20 0.806 0.659 

At8 v/u," 0.675 0.539 0.494 
AliJ 5.2 7.8 9.5 
N8 2560 5120 4160 

TABLE 1. Temporal resolution parameters 

A 4  3.75 x 10-3 2.52 x 10-3 2.06 x 10-3 

The first term on the right-hand side of (1) represents the pressure source that results 
from the linear interaction of the mean shear with the turbulence. The next six terms 
are the pressure source terms that result from the nonlinear interactions of the 
turbulent flow field. 

The pressure intensity normalized by the mean shear, shown in figure 1, decreases 
across the layer with increasing curvature. In particular, the near-wall maximum of the 
pressure intensity is reduced by increasing the curvature. A similar decrease in 
magnitude occurs in the pressure source terms (figure 2). The intensity, skewness and 
flatness of the wall pressure fluctuations of the transversely curved flows are compared 
to their plane channel counterparts in table 2. 

Contrary to what was generally accepted (Kraichnan 1956; Panton & Linebarger 
1974), Kim (1989) found that in turbulent channel flow the nonlinear turbulence field 
interactions constitute the strongest sources of pressure fluctuations. The same is true 
in the current transversely curved flows. 

In the plane channel the maximum of the mean square of the nonlinear terms occurs 
at about yf x 20, which is the same as the mean position of the near-wall vortices as 
well as the position of the maximum of the pressure intensity (Kim 1989). In the 
transversely curved flows, the maximum of the pressure intensity is weakened as the 
curvature increases and it is at about the same position as in the plane channel flow 
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FIGURE 2. Profiles of the root-mean-square value of the pressure source terms normalized by v and 
u,: (n) linear contribution: cylinders with -, y = 5 and ----, y = 11 ; (b) nonlinear contribution: 
cylinders with -, y = 5 and ----, y = 11; total source terms: cylinders with -.-, y = 5 and 

, y =  11. _-_ 

Y 0 5 11 
1.54 0.84 0.58 ,1/2 

P W  

S(PJ - 0.03 -0.70 -0.78 
F(PJ 5.16 7.16 6.18 

TABLE 2.  Wall pressure parameters 

(y' = 20, figure 1). Similarly, as the curvature increases, the average strength of the 
near-wall vortices is weakened while the average position of the vortex cores remains 
the same (y' z 20) (see $ 5  of Part 1). 

In order to associate the pressure intensity with the sources of pressure fluctuations 
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FIGURE 3. Profiles of the root-mean-square value of the nonlinear contributions to the source terms 
normalized by v and u,: (a) y = 5,  (b) y = 11; ~ (i3ur/i3r)z, . . . . . . . . (2/r)(au,/ae-u,)(au,/ar), 
(1  /P) (au,/ao + D r y ,  -. . .- (au,/az)z, ---- 2(au,/ar) (au,/az), --- ( 2 / r )  (au,/ae)(au,/az). 

in the flow, the various contributions to the nonlinear source terms of the pressure are 
examined (figure 3). The most important nonlinear pressure source term in the 
transversely curved flow is 

This term includes significant contributions from the near-wall streamwise vortices, as 
does its counterpart in the plane channel. Note also that in both flows this source term 
develops near-wall (y' z 5) local extrema. Vorticity of opposite sign to the primary 
vortices in the vicinity of the wall may be responsible for this behaviour. 

Figure 3 also shows that, as the curvature increases, another nonlinear term, 
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FIGURE 6. Spectra of the wall pressure fluctuations (SAk, = y,  and the scale of the ordinate is twice 
that of the abscissa): (a) y = 5 ,  (6) y = 11. The contour levels are logarithmically distributed from 

to with exponent increments of 0.3. 

plays an increasingly important role in the pressure fluctuations. Note that the factors 
in this product are the two velocity gradients that define the radial component of the 
vorticity. As the curvature increases, strong normal vorticity fluctuations (relative to 
the local streamwise vorticity fluctuations) become increasingly more common farther 
away from the wall (see figures 17 and 18 of Part 1). 

3. Spatial spectra 
The one-dimensional wall pressure spectra as a function of the azimuthal (spanwise) 

and axial (streamwise) wavenumbers are shown in figure 4, along with their planar 
counterparts (Choi & Moin 1990). Note that the spanwise spectra (figure 4a) is not 
affected by the transverse curvature in the high wavenumber range. In the low 
wavenumber range the intensity of the spanwise spectra decreases with increasing 
curvature. This suggests that the curvature mostly affects structures with large 
spanwise lengthscales (small kB). The streamwise spectral density of the wall pressure 
fluctuations decreases significantly with curvature for all scales (figure 4 b). The three 
flows display a negligible wavenumber range with the -1 slope in the streamwise 
spectrum, owing to the low Reynolds numbers. The high wavenumber range of the 
streamwise spectrum has a - 5  (see Blake 1986) slope in the planar case. In the 
transversely curved flows the axial spectra exhibit steeper slopes in the high 
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FIGURE 7. Azimuthal (spanwise) two-point correlations of the wall pressure fluctuations as a 
function of (a) B (radians) and (b) Ba+: -, y = 5 (at z 43); ----, y w 11 (a+ x 21). 

wavenumber range, indicating a weakening of structures in the buffer layer that 
contribute to the wall pressure fluctuations. 

In a transversely curved boundary layer, the volume of turbulent flow that must be 
supported per unit wall surface area is larger than in the plane channel case by a factor 
of 1 +iy.  This is a natural curvature parameter. It was found that when scaled with the 
curvature dependent lengthscale given by 

Sf = S( 1 + iy)1’2, ( 5 )  
the axial (streamwise) spectrum of the wall pressure fluctuations of the plane channel 
flow and of the transversely curved flows collapse in the high wavenumber range, as 
shown in figure 5. This lengthscale is related to the velocity scale defined in 93.3 of Part 
1 (see 96). 

The two-dimensional spatial wall pressure spectra are shown in figure 6. As in the 
planar case (see figure 12 of Choi & Moin 1990) the transversely curved spectra are 



392 J. C. Neves and P. Moin 

FIGURE 8. Axial (streamwise) two-point correlations of the wall pressure fluctuations 
-, y = 5 and ----, y = 1 1 .  
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FIGURE 9. Contour plot of two-point correlations of the wall pressure fluctuations for plane channel 
(Choi & Moin 1990) as a function of the streamwise ( r l )  and spanwise (Y:) separations. The contour 
levels are from 0.1 to 0.9 with increments of 0.1. 

elongated in the spanwise direction. However, as the curvature increases the azimuthal 
(spanwise) elongation of the spectrum increases. In addition the energy of the large 
structures (small k, or k,) decreases with increasing curvature. 

4. Two-point correlations 
In two previous studies of the wall pressure fluctuations in boundary layers with 

transverse curvature (Willmarth & Yang 1970; Willmarth et al. 1976) it was shown 
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FIGURE 10. Contour plot of two-point correlations of the wall pressure fluctuations for (a)  y = 5 and 
for (b)  y = 11 as a function of the axial (v:-streamwise) and azimuthal (a+O-spanwise) separations. 
The contour levels are from 0.1 to 0.9 with increments of 0.1. 

that, as the curvature increases, the wall pressure becomes better correlated around the 
cylinder. This trend is also evident in the present flows as shown in figure 7(a). Note, 
however, that in viscous units the azimuthal (spanwise) correlation length decreases 
with increasing curvature (figure 7b).  In the axial two-point correlations (figure S), the 
zero-crossing point (i.e. where R,,(z/S*) = 0) is at z/S* = 3.4,3.9 and 4.6 for the plane 
channel, the y = 5 and the y = 11 flows, respectively. These values show a distinct 
increase with curvature and are higher than the value of 2 reported by Willmarth & 
Yang (1970) and Willmarth et al. (1976). 

For small separations, the wall pressure correlation contours in the planar case 
(Willmarth & Wooldridge 1962; Choi & Moin 1990) are nearly circular and, as the 
separation increases, the ratio of the spanwise to the streamwise lengthscales increases. 
In contrast, in a transversely curved flow Willmarth & Yang (1970) ( y  = 2 and 
a+ = 4500) report wall pressure correlation contours which, for large separations, are 
compressed in the spanwise direction. However, the y = 4 measurements of Willmarth 
et al. (1976) seem to be inconsistent with this trend, in that their correlation contours 
are elongated in the spanwise direction (as in the planar flow) even though the 
curvature is stronger than in Willmarth & Yang (1970). Figure 9 shows the correlation 
contours of the wall pressure fluctuations for the plane channel flow. In contrast, figure 
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FIGURE 11. Fractional contributions to the root-mean-square wall pressure fluctuations from sources 
located at yo E [0, y,] : ---, plane channel; cylinders with -, y = 5 and ----, y = 1 1 ( y ,  = rs - a).  
The result is normalized by the total wall pressure intensity. 

10 shows that as the curvature increases, there is a significant increase in the ratio of 
the axial (streamwise) to azimuthal (spanwise) lengthscales for all separations. 

5. Green function representation 
Further insight into the spatial structure of the wall pressure fluctuations can be 

obtained by representing the pressure field in terms of the Green function of the 
Poisson operator. 

In transversely curved flows the Fourier coefficient of the wall pressure fluctuations 
is given by (Neves et al. 1992) 

where r, is the radial position of the source, f denotes the Fourier transform of the 
source of the pressure Poisson equation (equation (1)) and d is the Green function of 
the Laplacian operator in cylindrical coordinates with derivative boundary conditions. 
From (6) the Fourier coefficients of the contributions to the wall pressure fluctuations 
(irL) from sources located in the volume close to the cylinder surface at a d r, < r, are 
given by 

(7) 8 - = @(a, ro)Aro) ro dr, + a&a, a)  - - r, $(a, rs) 2 1 . 
rs  z j/_o dr r=rs 

Likewise, the Fourier coefficients of the contributions of the outer part of the flow 
volume (rs < r ,  < a+ 1) to the wall pressure fluctuations (d,:) are given by 

Similar expressions can be obtained for the plane channel. The root-mean-square of 
the contributions to the wall pressure fluctuations normalized by the total wall r.m.s. 
pressure is shown in figure 11 as a function of the cutoff r,. For the two transversely 
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FIGURE 12. Contour plot of two-point correlations of the contributions to the wall pressure 
fluctuations in the plane channel from flow in the interval (a) [O,y,] and (b) [y,, 11 (1  denotes the 
channel centreline) as a function of the streamwise (rf) and spanwise (r:) separations. The contour 
levels are from 0.1 to 0.9 with increments of 0.1 and y ,  = 0.19 (y :  = 35.4). 

curved flows and the plane channel, more than 80% of the wall r.m.s. pressure 
fluctuations are produced by the inner part of the domain ( y ,  = r,-a % 0.2). Note 
that, as the curvature increases, there is a slight increase in the wall pressure fractional 
contributions from the near-wall ( y ,  < 0.2) part of the flow. 

Small separation correlation contours result from small-scale pressure fluctuations 
typically associated with the inner part of the boundary layer, while the large 
separation correlation contours have significant contributions from large-scale motions 
in the outer part of the boundary layer. This is demonstrated in figure 12 which shows 
the plane channel two-point correlations of pyb and py: for ys % 0.2. It is clear that the 
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FIGURE 13. Contour plot of two-point correlations of the contributions to the wall pressure 
fluctuations for y = 5 from flow in the interval (a) [a, YJ and (b) [rS, a + 11 as a function of the axial 
(r:-streamwise) and azimuthal (a'8-spanwise) separations. The contour levels are from 0.1 to 0.9 with 
increments of 0.1 and y s  = 0.2 (y :  = 43.8). 

spanwise elongation of the planar wall pressure correlation contours is due to 
disturbances in the outer part of the layer (figure 12b). Note also that for this cutoff 
( y ,  z 0.2) the shape of the planar wall pressure correlation contours due to the inner 
part of the flow are slightly elongated in the streamwise direction (figure 12a). 

The two-point correlations of pr; and p,: for y ,  = r,  - a x 0.2 are shown in figures 
13 and 14 for y = 5 and for y = 11, respectively. In both cases the two-point 
correlations of the wall pressure fluctuations due to contributions from the volume 
close to the cylinder have a streamwise aspect ratio similar to that shown in figure 10 
for the contributions of the whole flow. On the other hand, in the y = 5 flow, the shape 
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FIGURE 14. Contour plot of two-point correlations of the contributions to the wall pressure 
fluctuations for y = 11 from flow in the interval (a) [a, r,] and (b) [rs,  a +  11 as a function of the axial 
(rz-streamwise) and azimuthal (a+@-spanwise) separations. The contour levels are from 0.1 to 0.9 with 
increments of 0.1 and y ,  = 0.2 (y:  = 47.7). 

of the correlation contours of the wall pressure fluctuations due to the outer part of the 
flow (figure 13b) have a spanwise orientation for large separations. As the curvature 
increases there is an increase in the streamwise orientation of the contours of the outer 
contribution (see figures 12b, 13b and 14b). Wall pressure correlation contours due to 
the outer part of the flow, obtained for larger values of the cutoff ( y ,  > 0.2, not shown), 
become increasingly oriented in the spanwise direction in both transversely curved 
flows (y = 5 and y = 11) and the spanwise stretching effect of the outer part of the flow 
on the wall pressure correlations decreases as the curvature increases. 

The wall pressure correlations due to the near-wall part of the flow are elongated in 
the streamwise direction, suggesting that the near-wall structures are responsible for 
this shape. The curvature trend shown in figures 12-14 is consistent with the 
lengthscale parameter L* based on the streamwise velocity fluctuations uZ (see $ 6 ,  (1 8) 
and figure 24 of Part 1) which suggests that relative to the plane channel, as the 
curvature increases, the ratio of the streamwise to spanwise lengthscales increases near 
the wall for both flows and away from the wall in only the y = 1 1  case. 

6. Temporal spectra 
Figure 15 shows a sample of the time traces of the wall pressure fluctuations 

normalized by their r.m.s. values. Note that, as the curvature increases, the high- 
frequency content of the fluctuations is weakened. Apparently the different appearances 
of the wall pressure fluctuations in the two transversely curved flows, does not 
noticeably affect the flatness and skewness values (see table 2). 



398 J. C. Neves and P. Moin 

-8 - 

4 4  R 1 

F = 6.18 

l ' l * l - I ' l -  

S = -0.03 
F = 5.16 

- " I  ' I ' I ' I ' I ' I 

0 1 2 3 4 5 

4-1 I 

s = -0.10 
F = 7.16 

I S = -0.78 -4 1 
0 1 2 3 4 5 6 

t 

FIGURE 15. Signal of the wall pressure fluctuations normalized by 2"': (a) plane channel; 
cylinders with (b) y = 5; (c)  y = 11. 

The temporal spectra of the wall pressure fluctuations of the two transversely curved 
turbulent flows are compared to their planar counterpart in figure 16(a). As expected 
from the streamwise one-dimensional spectra, the temporal spectra decrease at all 
frequencies with increasing curvature. 

In the wall pressure temporal spectra measurements of Willmarth & Yang (1970) 
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FIGURE 16. Temporal spectra of the wall pressure fluctuations normalized by 7%: (a) S/u, timescale; 
(b)  S/u, timescale. ---, plane channel (Choi & Moin 1990) (y  = O,uf = u,); cylinders with 
__ y = 5 and ----, y = 11; ........ , -1 slope; -.-, -5 slope. 

and Willmarth et al. (1976), a reduction in the intensity of the high-frequency range 
was also observed. However, because of large a+ the effect of curvature on the inner 
part of the boundary layer, and therefore on the high-frequency range of their wall 
pressure temporal spectra should have been negligible. 

Using the curvature dependent lengthscale defined in $ 3  (equation (5)) ,  a curvature 
dependent timescale (sf/u,) can be defined : 

When scaled with this curvature-dependent timescale the temporal spectra of the wall 
pressure fluctuations of the two transversely curved flows collapse with their planar 
counterpart in the high-frequency range (figure 16b). Also note that this timescale is 
related to the velocity scale 21 defined in Part 1 (see Part 1 ,  $4.3) by 

7. Convection velocity and Taylor's hypothesis 
The notion that structures in the flow are convected at a velocity close to the free- 

stream velocity has received substantial experimental support in planar boundary-layer 
flows. Experimentally, it is easier to measure temporal spectra, from which streamwise 
spectra are obtained by invoking Taylor's hypothesis. 
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FIGURE 17. Contour plot of the axial (streamwise) wave-number-frequency spectra of the wall 
pressure fluctuations: (a) y = 5 and the contour levels are from 0.00035 to 0.0070; ( h )  y = 11  and the 
contour levels are from 0.00035 to 0.0035. The contour increments are 0.00035. 
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FIGURE 18. Contour plot of two-point correlations of the wall pressure fluctuations as a function of 
the axial (streamwise) spatial ( r ; )  and temporal (r:)  separations: ( a )  y = 5;  (b) y = 11. The contours 
are from 0.1 to 0.9 with increments of 0.1. 

The frequency/axial (streamwise) wavenumber power spectra, @,,(k,, w) ,  for the 
two transversely curved flows are shown in figure 17. As has been the case throughout 
this study the intensity decreases as the curvature increases for all frequencies and axial 
lengthscales. In both cases the narrow aspect ratios of the iso-contours denote well- 
defined convection velocities. 
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FIGURE 19. Convection velocity normalized by U ,  as a function of the axial (streamwise) 
separation ( r 2 / 8 * ) ;  0, for y = 5 and a, for y = 11. 

The space-time correlation of the wall pressure fluctuations is given by the Fourier 
transform of the frequency/streamwise wavenumber spectrum, 

R,,(r,, r t )  = 2 C Qjpp(kz, 0 )  exp (-iwr,) exp ( - ik, rz) ,  (1 1) 

and is shown in figure 18 for the two transversely curved flows. When measured in 
viscous units, the axial lengthscales of the auto-correlation contours are virtually 
unaffected by curvature, however, the temporal scale increases with curvature, since the 
convection velocities are different (see below). Again, clearly defined convection 
velocities are evident from the oblong shape of the contours. 

Several definitions for the convection velocity have been proposed in the literature 
(Wills 1964). The most common are obtained from the frequency/streamwise 
wavenumber spectrum, Qjpll(kz, w ) ,  or from its Fourier transform, Rqp(rz, r t ) .  

For example, the convection velocity as a function of the axial (streamwise) 
separation (v,) for a given time delay ( v t J  is defined as the ratio v,/rt ,  for which 
Rpp(rz, rt,) is a maximum, 

k, 10 

(12) 

Likewise, the convection velocity can be defined as a function of the temporal 
separation ( r t )  according to 

The convection velocities of the wall pressure fluctuations computed from (12) and (13) 
are shown in figures 19 and 20, respectively. These convection velocities are lower than 
in the plane channel. As the axial separation increases, the convection velocity 
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FIGURE 21. Convection velocity normalized by U ,  as a function of the streamwise wave number: 

0, for y =  5 and a, for y =  11. 
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increases to about 0.7Um for y = 5 and to about 0.65Um for y = 11. Note, however, 
that as a function of the temporal separation the convection velocity is practically 
constant in both flows (U,  N 0.6Um). 

The convection velocity can also be defined as a function of the streamwise 
wavenumber (Wills 1970), 
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FIGURE 22. Convection velocity normalized by U ,  as a function of frequency: cylinders: 0, for 
y = 5 and A, for y = 11. 

and as a function of the frequency, 

U,(W) = -- - - (kz ,w) l  a @ P P  = 0. 
kzc ’ akz k,=k, 

When expressed as a function of the axial wavenumber (figure 21) the convection 
velocity is about 0.6U, for large wavenumbers in all three flows. Likewise, as a 
function of frequency the convection velocity (figure 22) is about 0.65Um in the curved 
flows, which is lower than the value of about O.SU, for the plane channel (Choi & 
Moin 1990). 

In the cylinder flows, the various convection velocities show little variation among 
themselves. In the following a constant value of the convection velocity, 0.65Um, is 
used to relate the temporal spectrum ($pp(w))  to the axial spectrum (Epp(kz)) according 
to Taylor’s hypothesis : 

Comparison of $,,(w) with Epp,(kz ) (figure 23) shows that Taylor’s hypothesis is a 
better assumption for low frequenciees, as was also observed in the planar case (Choi 
& Moin 1990). 

The decomposition of the two-dimensional spectra @,,(kz, w )  and cDpp(kB, w )  into 
their streamwise and spanwise similarity functions F,(kz U J w )  and &(ko UJw),  are 
given by 

respectively (Corcos 1964). Unlike the plane channel where a self-similar behaviour in 
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FIGURE 23. Conversion of the temporal spectrum to the axial (streamwise) wavenumber spectrum 
using Taylor's hypothesis for (a) y = 5, and for (b) y = 11 : -, ED&); ----, from $pp(w) using 
Taylor's hypothesis (U,  N 0.65U,). 
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FIGURE 24. Axial (streamwise) similarity function <(k, U,(w)/w). The frequency range of o is: (a) from 
31.13 to311.3withincrementsof31.13fory = 5and(b)from38.08 to380.8withincrementsof38.08 
for y = 11. 
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FIGURE 25. Azimuthal (spanwise) similarity function l$(kfl U,(o)/o). The frequency range of OJ is: (a) 
from 31.13 to 311.3 with increments of 31.13 for y = 5 and (b) from 38.08 to 380.8 with increments 
of 38.08 for y = 11. 

the spanwise direction was observed, no self-similar behaviour is apparent in either 
&(kz U J o )  or &(ko lJc/w), as shown in figures 24 and 25. 

8. Summary and conclusions 
The magnitudes of the linear and nonlinear sources of pressure fluctuations are 

reduced as the curvature increases. The sources associated with streamwise vortices are 
the strongest, as in planar flows. However, as the curvature increases, a second source 
of pressure fluctuations associated with the strong wall normal vorticity fluctuations 
becomes increasingly important. 

As the curvature increases, the axial (streamwise) wall pressure spectrum decreases 
for all scales, whereas the azimuthal (spanwise) wall pressure spectrum decreases only 
for small wavenumbers (large scales). A curvature-dependent outer lengthscale, which 
increases with curvature, is proposed from geometrical arguments. This lengthscale 
collapses the streamwise spectra of the wall pressure fluctuations of the two transversely 
curved flows with that of the plane channel in the high wavenumber range. 

Even though the wall pressure fluctuations become increasingly better correlated 
around the cylinder, the azimuthal correlation length, when measured in wall units, 
decreases as the curvature increases. On the other hand, the axial (streamwise) 
correlation length increases with curvature. Unlike in the planar case, the wall pressure 
iso-correlation contours are elongated in the streamwise direction, for both large and 
small separations. Since the streamwise elongation of turbulence structures with 
curvature is most pronounced near the wall, it is conjectured that the near wall 
fluctuations are more important in determining the lengthscales of the wall pressure 
fluctuations. Fractional contributions of the flow (from inner and outer layers) to the 
wall pressure intensity show a minimal effect of curvature relative to the plane channel. 
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Like the axial (streamwise) one-dimensional spectra, the temporal spectra of the wall 
pressure fluctuations of the transversely curved flows also decreases as the curvature 
increases. A new curvature dependent timescale which increases with increasing 
curvature was proposed. When scaled with the mean wall shear and this timescale the 
temporal spectra of the wall pressure fluctuations of the two transversely curved flows 
studied and that of the plane channel collapse in the high-frequency range. 

The two-dimensional spectra and space-time correlations of the wall pressure 
fluctuations give a lower convection velocity (U,  NN 0.6Um) than in the plane channel. 
With this convection velocity Taylor’s hypothesis holds in the two transversely curved 
flows studied. 
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